
Taylor Polynomial Practice - 11/9/16

1. Find the 4th order Taylor polynomial for f(x) = e2x at x = 0.

Solution: We need to take 4 derivatives:

f ′(x) = 2e2x

f ′′(x) = 4e2x

f ′′′(x) = 8e2x

f (4)(x) = 16e2x

Since e0 = 1, we have
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2. Find T5 for f(x) = sin(x) at x = π
2
.

Solution: We need to take 5 derivatives:

f ′(x) = cos(x)

f ′′(x) = − sin(x)

f ′′′(x) = − cos(x)

f (4)(x) = sin(x)

f (5)(x) = cos(x)

Since sin
(
π
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)
= 1 and cos
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)
= 0, then
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3. Find T5 for f(x) = sin(x) at x = 0.

Solution: We can use the same derivatives as we did for the previous problem. Since sin(0) =
0 and cos(0) = 1, then

T5(x) =
1
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4. Find the 4th order Taylor polynomial for f(x) = cos(2x) at x = 0.

Solution: We need to take 4 derivatives:

f ′(x) = −2 sin(2x)

f ′′(x) = −4 cos(2x)

f ′′′(x) = 8 sin(2x)

f (4)(x) = 16 cos(2x)

Then

T4(x) = 1− 4
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5. Find the 2nd order Taylor polynomial for f(x) = ln(1 + x2) at x = 0.

Solution: We need to take 2 derivatives:

f ′(x) = 2x
1

1 + x2

f ′′(x) =
2

1 + x2
+ 2x(2x)

1

1 + x2

Then

T2(x) = 0 +
0
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