## Taylor Polynomial Practice - 11/9/16

1. Find the 4th order Taylor polynomial for $f(x)=e^{2 x}$ at $x=0$.

Solution: We need to take 4 derivatives:

$$
\begin{aligned}
f^{\prime}(x) & =2 e^{2 x} \\
f^{\prime \prime}(x) & =4 e^{2 x} \\
f^{\prime \prime \prime}(x) & =8 e^{2 x} \\
f^{(4)}(x) & =16 e^{2 x}
\end{aligned}
$$

Since $e^{0}=1$, we have

$$
T_{4}(x)=1+\frac{2}{1!} x+\frac{4}{2!} x^{2}+\frac{8}{3!} x^{3}+\frac{16}{4!} x^{4}
$$

2. Find $T_{5}$ for $f(x)=\sin (x)$ at $x=\frac{\pi}{2}$.

Solution: We need to take 5 derivatives:

$$
\begin{aligned}
f^{\prime}(x) & =\cos (x) \\
f^{\prime \prime}(x) & =-\sin (x) \\
f^{\prime \prime \prime}(x) & =-\cos (x) \\
f^{(4)}(x) & =\sin (x) \\
f^{(5)}(x) & =\cos (x)
\end{aligned}
$$

Since $\sin \left(\frac{\pi}{2}\right)=1$ and $\cos \left(\frac{\pi}{2}\right)=0$, then

$$
T_{5}(x)=1-\frac{1}{2!}\left(x-\frac{\pi}{2}\right)^{2}+\frac{1}{4!}\left(x-\frac{\pi}{2}\right)^{4}
$$

3. Find $T_{5}$ for $f(x)=\sin (x)$ at $x=0$.

Solution: We can use the same derivatives as we did for the previous problem. Since $\sin (0)=$ 0 and $\cos (0)=1$, then

$$
T_{5}(x)=\frac{1}{1!} x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}
$$

4. Find the 4th order Taylor polynomial for $f(x)=\cos (2 x)$ at $x=0$.

Solution: We need to take 4 derivatives:

$$
\begin{aligned}
f^{\prime}(x) & =-2 \sin (2 x) \\
f^{\prime \prime}(x) & =-4 \cos (2 x) \\
f^{\prime \prime \prime}(x) & =8 \sin (2 x) \\
f^{(4)}(x) & =16 \cos (2 x)
\end{aligned}
$$

Then

$$
T_{4}(x)=1-\frac{4}{2!} x^{2}+\frac{16}{4!} x^{4}
$$

5. Find the 2nd order Taylor polynomial for $f(x)=\ln \left(1+x^{2}\right)$ at $x=0$.

Solution: We need to take 2 derivatives:

$$
\begin{aligned}
f^{\prime}(x) & =2 x \frac{1}{1+x^{2}} \\
f^{\prime \prime}(x) & =\frac{2}{1+x^{2}}+2 x(2 x) \frac{1}{1+x^{2}}
\end{aligned}
$$

Then

$$
T_{2}(x)=0+\frac{0}{1!} x+\frac{2}{2!} x^{2}=x^{2}
$$

